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Abstract: Simultaneous activation of brain regions (i.e., brain connection features) is an essential
mechanism of brain activity in emotion recognition of visual content. The occipital cortex of the brain
is involved in visual processing, but the frontal lobe processes cranial nerve signals to control higher
emotions. However, recognition of emotion in visual content merits the analysis of eye movement
features, because the pupils, iris, and other eye structures are connected to the nerves of the brain.
We hypothesized that when viewing video content, the activation features of brain connections are
significantly related to eye movement characteristics. We investigated the relationship between
brain connectivity (strength and directionality) and eye movement features (left and right pupils,
saccades, and fixations) when 47 participants viewed an emotion-eliciting video on a two-dimensional
emotion model (valence and arousal). We found that the connectivity eigenvalues of the long-distance
prefrontal lobe, temporal lobe, parietal lobe, and center are related to cognitive activity involving
high valance. In addition, saccade movement was correlated with long-distance occipital-frontal
connectivity. Finally, short-distance connectivity results showed emotional fluctuations caused by
unconscious stimulation.

Keywords: emotion recognition; attention; eye movement; brain connectivity

1. Introduction

Studies have shown that different brain regions participate in various perceptual and
cognitive processes. For example, the frontal lobe is related to thinking and consciousness,
whereas the temporal lobe is associated with processing complex stimulus information,
such as faces, scenes, smells, and sounds. The parietal lobe integrates a variety of sensory
inputs and the operational control of objects, while the occipital lobe is related to vision [1].

The brain is an extensive network of neurons. Brain connectivity refers to the syn-
chronous activity of neurons in different regions and may provide useful information on
neural activity [2]. Mauss and Robinson [3] suggested that emotion processing occurs in
distributed circuits, rather than in specific isolated brain regions. Analysis of the simulta-
neous activation of brain regions is a robust pattern-based analysis method for emotional
recognition [4]. Researchers have developed methods to capture asymmetric brain activity
patterns that are important for emotion recognition [5].

Users search massive amounts of information until they find something useful [6].
However, although the information is presented visually, users do not recognize it, because
of a lack of attention. The cortical area known as the frontal eye field (FEF) plays a vital
role in the control of visual attention and eye movements [7].

Eye tracking is the process of measuring eye movements. Eye tracking signals imply
the user’s subconscious behaviors and provide essential clues to the context of the subject’s
current activity [8], which allow us to determine what elicits users’ attention.

The brain activity is significantly related to eye movement features involving pupil,
saccade, and fixation. Our pupils change their size accordingly [9] when one is stimulated
from resting to emotional states. The saccade is a decision made every time we move our
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eyes [10,11]. Decisions are influenced by one’s expectations, goals, personalities, memories,
and intentions [12].

A gaze is a potent social cue. For example, mutual gaze often implies threat or evasion,
signaling submission or avoidance [13–16]. Eye gaze processing is one of the bases for
social interactions, because the neural substrate for gaze processing is an essential step in
developing neuroscience for social cognition [17,18].

By analyzing eye movement data, such as gaze position and gaze time, researchers
can obtain explanations for multiple cognitive operations involving multiple behaviors [19].
For example, language researchers can use eye-tracking to analyze how people read and
understand spoken language. Consumer researchers can study how shoppers make pur-
chases. Researchers can gain a better cognitive understanding by integrating eye tracking
with neuroimaging technologies (e.g., fMRI and EEG) [20].

Table 1 compares the few studies on eye movement features and EEG signals with
an interest in producing a robust emotion-recognition model [21]. Wu et al. [22] integrated
functional features from EEG and eye movements with deep canonical correlation analysis
(DCCA). Their classification achieved 95.08% ± 6.42% accuracy on SEED public emotion
EEG datasets [23]. Zheng et al. [24] used a multimodal depth neural network to incor-
porate eye movement and EEG signals to improve recognition performance. The results
demonstrated that modality fusion with deep neural networks significantly enhances the
performance compared with a single modality. Soleymani [25] learned that the decision-
level fusion strategy is more adaptive than feature-level fusion when incorporating EEG
signals and eye movement data. They also found that user-independent emotion recogni-
tion can perform better than individual self-reports for arousal assessment. While studies
focused on improving recognition accuracy, currently, there is a lack of understanding of the
relationship between brainwave connectivity and eye movement features (fixation, saccade,
and left and right pupils). Specifically, we do not know how the functional relationship
varies according to visual content’s emotional characteristics (valence, arousal).

Table 1. Comparison of previous and proposed methods.

Methods Strengths Weaknesses

Deep canonical correlation analysis
(DCCA) of integrated functional

features [22]

Applied machine learning and
incorporated and analyzed brain

connectivity and eye movement data.

The statistical significance of brain
connectivity and eye movement feature

variables was not analyzed.

Designed a six-electrode placement to
collect EEG and combined them with eye
movements to integrate internal cognitive

states and external behaviors [24].

Demonstrated the effect of modality
fusion with a multimodal deep neural

network. The mean accuracy was 85.11%
for four emotions (happy, sad, fear,

and neutral).

The study did not analyze the functional
relationship between brainwave

connectivity and eye movements.

User-independent emotion recognition
method to identify affective tags for

videos using gaze distance, pupillary
response, and EEG [25].

Investigated pupil diameter, gaze
distance, eye blinking, and EEG and

applied modality fusion strategy at both
feature and decision levels.

The experimental session limited the
number of videos shown to participants.

The study did not investigate
brainwave connectivity.

Recognition of emotion by brain
connectivity and eye movement

(proposed method).

Explored the characteristics of brainwave
connectivity and eye movement

eigenvalues and the relationship between
the two in a two-dimensional

emotional model.

Did not apply machine learning to
formulate a model. The analysis was

based on one stimulus for each of the four
quadrants in the two-dimensional model.

In this study, our research question involves the functional characteristics of brainwave
connectivity and eye movement eigenvalues in valence-arousal emotions in a two-dimensional
emotional model. We hypothesized that when viewing video content, the activation features
of brain connections are significantly related to eye movement characteristics. We divided
and analyzed brainwave connectivity into three groups: (1) long-distance occipital-frontal
connectivity, (2) long-distance prefrontal and temporal, parietal, and central connectivity,
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and (3) short-distance connectivity, including frontal-temporal, frontal-central, temporal-
parietal, and parietal-central connectivity. We applied k-means clustering to distinguish
emotional feature responses, and eye movement eigenvalues were further differentiated.
We then analyzed the relationship between eye movements and brain wave connectivity,
depicting the differential characteristics of a two-dimensional emotional model.

2. Materials and Methods

We adopted Russell’s two-dimensional model [26], where emotional states can be
defined at any valence or arousal level. We invited participants to view emotion-eliciting
videos with varying valences (i.e., from unpleasant to pleasant) and arousal levels (i.e.,
from relaxed to aroused). To understand brain connectivity and causality of brain regions
according to different emotions, we used supervised learning to classify emotional and non-
emotional states, and extract eye movement feature values associated with such different
emotional states to analyze the relationship between brain activity and eye movement.

2.1. Stimuli Selection

We edited 6-min video clips (e.g., dramas or films) to elicit emotions from the partici-
pants. The content used to induce emotional conditions (valence and arousal) was collected
in a two-dimensional model. To ensure that the emotional videos were effective, we con-
ducted a stimulus selection experiment prior to the main experiment. We selected 20 edited
dramas or movies containing emotions; five video clips were used for each quadrant in the
two-dimensional model. Thirty participants viewed the emotional videos and responded
to a subjective questionnaire. They received USD 20 for their participation in the study.
Among the five video clips, the most representative video for each of the four quadrants in
the two-dimensional model was selected (see Figure 1). Four stimuli were selected for the
main experiment.
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2.2. Experiment Design

The main experiment had a factorial design of two (valence: pleasant and unpleasant)
× two (arousal: aroused and relaxed) independent variables. The dependent variables
included participants’ brainwaves, eye movements (fixation, saccade, and left and right
pupils), and subjective responses to a questionnaire.

2.3. Participants

We conducted an a priori power analysis using the program G*Power with the power
set at 0.8 and α = 0.05, d = 0.6 (independent t-test), two-tailed. These results suggest
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that an N value of approximately 46 is required to achieve appropriate statistical power.
Therefore, 47 university students were recruited for the study. Participants’ ages ranged
from 20 to 30 years (mean = 28, STD = 2.9), with 20 (44%) men and 27 (56%) women.
We selected participants with a corrective vision ≥ 0.8, without any vision deficiency, to
ensure reliable recognition of visual stimuli. We recommended that the participants sleep
sufficiently and refrain from smoking and consuming alcohol and caffeine the day before
the experiment. As the experiment required valid recognition of the participant’s facial
expression, we limited the use of glasses and cosmetic makeup. All participants were
briefed on the purpose and procedure of the experiment, and signed consent was obtained
from them. They were then compensated for their participation by payment of a fee.

2.4. Experimental Protocol

Figure 2 outlines the experimental process and the environment used in this study.
The participants were asked to sit 1 m away from a 27-inch LCD monitor. A webcam was in-
stalled on the monitor. Participants’ brainwaves (EEG cap 18 Ch) and eye movements (gaze
tracking device) were acquired, in addition to subjective responses to a questionnaire. We
set the frame rate of the gaze-tracking device to 60 frames per second. Participants viewed
four emotion-eliciting videos and responded to a questionnaire after each viewing session.
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Figure 2. Experimental protocol and configuration.

3. Analysis

Our brain connectivity analysis methods were based on Jamal et al. [27], as outlined
in Figure 3. The process consisted of seven stages: (1) sampled EEG signals at 500 Hz,
(2) removed the noise through pre-processing, (3) conducted fast Fourier transform (FFT)
at 0–30 Hz, (4) conducted band pass filter with delta (0 Hz–4 Hz), theta (4 Hz–8 Hz),
alpha (8 Hz–12 Hz), and beta (12 Hz–30 Hz), (5) processed continuous wavelet transform
(CWT) with complex Morlet wavelet, (6) computed the EEG frequency band-specific
pairwise phase difference, and (7) determined the optimal number of states in the data
using incremental k-means clustering.

We used the CWT with a complex Morlet wavelet as the basis function to analyze the
transient dynamics of phase synchronization. In contrast to the discrete Fourier transform
(DFT), it has a short vibration signal and an expiration date for the vibration wave. Figure 4
shows the Morlet wavelet graph. The CWT operates with a signal with scaled and shifted
versions of a basic wavelet.
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Therefore, it can be expressed as the formula below in Equation (1), where a is a scale
factor and b is a shift factor. Being continuous, infinite wavelets can be shifted and scaled:

Xw(a, b) =
1

|a| 12

∫ ∞

−∞
x(t)ϕ

(
t− b

a

)
dt (1)

4. Results

We will present the results of the participants’ subjective evaluation and brain connec-
tivity analysis, followed by the results of eye movement analysis.

4.1. Subject Evaluation

We compared the subjective arousal and valence scores between the four emotion-
eliciting conditions (pleasant-aroused, pleasant-relaxed, unpleasant-relaxed, and unpleasant-
aroused). We conducted a series of ANOVA tests on the arousal and valence scores. Post-
hoc analyses using Tukey’s HSD were conducted by adjusting the alpha level to 0.0125 per
test (0.05/4).

The mean arousal scores were significantly higher in the aroused conditions (pleasant-
aroused, unpleasant-aroused) than in the relaxed conditions (pleasant-relaxed, unpleasant-
relaxed) (p < 0.001), as shown in Figure 5. The pairwise comparison of the mean arousal
scores indicated that the scores were significantly different from one another, as shown in
Table 2. The results indicate that participants reported congruent emotional arousal with
the target emotion of the stimulus.

The results indicated that the mean valence scores were significantly higher in the
pleasant conditions (pleasant-aroused, pleasant-relaxed) than in the unpleasant conditions
(unpleasant-aroused, unpleasant-relaxed), p < 0.001, as shown in Figure 6. The pairwise
comparison of the mean valence scores indicated that the scores were significantly different
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from one another, except for two comparisons, as shown in Table 3. The results indicate that
participants reported congruent emotional valence with the target emotion of the stimulus.
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Table 2. Multiple comparisons of mean arousal scores using Tukey HSD.

Emotion
Condition 1

Emotion
Condition 2

Mean
Difference Lower Upper Reject

Pleasant-aroused Pleasant-relaxed −2.2083 −2.8964 −1.5202 True
Pleasant-aroused Unpleasant-aroused 0.9375 0.2494 1.6256 True
Pleasant-aroused Unpleasant-relaxed −0.7083 −1.3964 −0.0202 True
Pleasant-relaxed Unpleasant-aroused 3.1458 2.4577 3.8339 True
Pleasant-relaxed Unpleasant-relaxed 1.5 0.8119 2.1881 True

Unpleasant-aroused Unpleasant-relaxed −1.6458 −2.3339 −0.9577 True
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Table 3. Multiple comparisons of mean valence scores using Tukey HSD.

Emotion
Condition 1

Emotion
Condition 2

Mean
Difference Lower Upper Reject

Pleasant-aroused Pleasant-relaxed −0.125 −0.6531 0.4031 False
Pleasant-aroused Unpleasant-aroused −3.625 −4.1531 −3.0969 True
Pleasant-aroused Unpleasant-relaxed −3.1042 −3.6322 −2.5761 True
Pleasant-relaxed Unpleasant-aroused −3.5 −4.0281 −2.9719 True
Pleasant-relaxed Unpleasant-relaxed −2.9792 −3.5072 −2.4511 True

Unpleasant-aroused Unpleasant-relaxed −1.6458 −2.3339 −0.9577 True
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4.2. Brain Connectivity Features

We computed the EEG frequency band-specific pairwise phase differences for each
emotion-eliciting condition, as shown in Figures 7–10. A total of 153 pairwise features
were analyzed. If the power differences between the two brain regions are lower than
the mean power value, the connectivity is relatively strong. Such cases were marked

as unfilled (
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).
We further analyzed the long- and short-distance connectivity of the extracted features.

The connectivity of the frontal and occipital lobes can predict the process of information
transmission to the occipital lobe after emotion is generated (marked in green in Figure 11).
The eigenvalue was the average (N = 47) of the connectivity sum of the two channels
defined by the long-distance O-F connectivity.

The prefrontal cortex is involved in emotion regulation, recognition, judgment, and
reasoning. The connectivity of the prefrontal lobe to the temporal lobe, parietal lobe, and
center helps to understand the information processing process of visual-emotional stimuli
(marked in yellow in Figure 11). The eigenvalue was the average (N = 47) of the connectivity
sum of the two channels defined by the long-distance prefrontal connectivity.

Long- and short-range connectivity features have been extensively studied for their
ability to process social emotions and interactions. Short-distance connectivity characteris-
tics can determine the brain’s different states during negative emotions, especially those
related to the central-parietal lobe connectivity. We considered a distance of less than 10 cm
as short connectivity (marked pink in Figure 11). The eigenvalue was the average (N = 47)
of the connectivity sum of the two channels defined by the short-distance connectivity.
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4.2.1. Characteristics of Three Distance Connectivity

Figure 12 depicts the long-distance connectivity of the occipital and frontal lobes
(LD_O-F connectivity) of the beta wave in the visual comparison diagram of the two-
dimensional model. O-F connectivity in the unpleasant-aroused condition had the strongest
connectivity. In the pleasant-relaxed condition, bi-directional connectivity was observed
between the left frontal and occipital lobes. In the unpleasant-relaxed condition, bidi-
rectional connectivity was observed from the right occipital to the frontal lobe. In the
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pleasant-aroused condition, cross-hemispheric connectivity was observed between the
frontal and occipital lobes.
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Figure 12. The long-distance connectivity of the occipital and frontal lobes (LD_O-F connectivity) of
the beta wave.

Figure 13 depicts the long-distance connectivity of the prefrontal and temporal lobes,
parietal lobes, and central (LD_pF connectivity) beta waves in the visual comparison
diagram of the two-dimensional model. In pleasant-aroused and unpleasant-relaxed
conditions, the right prefrontal lobe was strongly connected to the central, parietal, and
temporal lobes of both hemispheres. In the pleasant-relaxed condition, there was strong
connectivity in the left prefrontal–temporal, left prefrontal–central, and left prefrontal–
parietal regions. In the unpleasant-aroused condition, the prefrontal–temporal, prefrontal–
parietal, and prefrontal–central regions showed the weakest connectivity.
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Figure 14 depicts the short-distance connectivity (SD connectivity) of the beta waves
in the visual comparison diagram of the two-dimensional emotional model. In the aroused
conditions (pleasant-aroused, unpleasant-aroused), strong frontal–temporal–central con-
nectivity was observed. However, in the relaxed conditions (pleasant-relaxed, unpleasant-
relaxed), strong central–parietal connectivity was observed.
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In summary, the analysis suggests a strong frontal activity in the unpleasant-aroused
condition, indicating intense information processing and transfer involving the frontal
cortex. In pleasant conditions, feedback is sent to the parietal, temporal, and central regions
after the prefrontal cortex processes the information. In the unpleasant-relaxed condition,
brain connectivity implies the control of the participant’s eye movement.

4.2.2. Power Value Analysis in Three Distance Connectivity

To further understand the strength and directionality of brainwave connectivity, sta-
tistical analysis was performed on the power value using ANOVA, followed by post hoc
analyses (see Figures 15–20).

Figure 15 depicts the eigenvalues (i.e., mean power value) of the occipital and frontal
lobe connectivity. The plus-minus sign of the eigenvalue determines the causality. In the
unpleasant-aroused condition, more information is processed in the frontal lobe, indicating
more activity in the occipital lobe than in primary visual processing.
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Figure 16 shows the absolute values of the mean (|mean|). The pleasant-relaxed and
unpleasant-aroused conditions exhibited high occipital-frontal connectivity, whereas the
pleasant-relaxed condition exhibited left hemisphere-frontal activation (see Figure 12).
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Figure 17 depicts the eigenvalues (i.e., the mean power value) of prefrontal connectivity.
The plus-minus sign of the eigenvalue determines the causality. The results showed that activity
in the prefrontal lobe in pleasant conditions (pleasant-aroused, pleasant-relaxed) was greater
than that in other regions. Conversely, in the unpleasant conditions (unpleasant-aroused,
unpleasant-relaxed), activity in the other regions was stronger than that in the prefrontal lobe.
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Figure 18 shows the absolute values of the mean (|mean|). The unpleasant-relaxed
condition exhibited the strongest connectivity.
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Figure 19 depicts the eigenvalues (i.e., mean power value) of the short-distance con-
nectivity in frontal–temporal, frontal–central, and temporal–parietal connections in the four
emotion-eliciting conditions. Overall, connectivity in the relaxed condition was stronger
than that in the aroused condition. Specifically, central–parietal connectivity showed
stronger activity than frontal–temporal and frontal–central connectivity (see Figure 14).
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Figure 20 shows the absolute values of mean (|mean|). The relaxed conditions (pleasant-
relaxed and unpleasant-relaxed) showed stronger connectivity, specifically stronger P-O
connectivity. Conversely, the aroused conditions (pleasant-aroused, unpleasant-aroused)
showed weaker connectivity, but stronger F-T connectivity. In particular, the unpleasant-
aroused, pleasant-aroused, and pleasant-relaxed conditions showed substantial premotor
cortical PMDr (F7) connections associated with eye movement control. This was consistent
with the saccade results.

Through statistical analysis, we found that connectivity in the pleasant-relaxed condi-
tion was the highest, while connectivity in the unpleasant-relaxed condition was higher
than that in the pleasant-aroused and unpleasant-aroused conditions.

Sensors 2022, 22, x  14 of 20 
 

 

 
Figure 19. The eigenvalues in the short-distance connectivity. 

Figure 20 shows the absolute values of mean (|𝑚𝑒𝑎𝑛|). The relaxed conditions (pleas-
ant-relaxed and unpleasant-relaxed) showed stronger connectivity, specifically stronger 
P-O connectivity. Conversely, the aroused conditions (pleasant-aroused, unpleasant-
aroused) showed weaker connectivity, but stronger F-T connectivity. In particular, the 
unpleasant-aroused, pleasant-aroused, and pleasant-relaxed conditions showed substan-
tial premotor cortical PMDr (F7) connections associated with eye movement control. This 
was consistent with the saccade results. 

Through statistical analysis, we found that connectivity in the pleasant-relaxed con-
dition was the highest, while connectivity in the unpleasant-relaxed condition was higher 
than that in the pleasant-aroused and unpleasant-aroused conditions. 

 
Figure 20. The absolute value in the short-distance connectivity. 

By comparing the three extracted brainwave connectivity eigenvalues with subjec-
tive evaluations, we found that the long-distance prefrontal connectivity eigenvalues have 
similar characteristics to the valence score measures of subjective evaluations. The pre-
frontal cortex (PFC) makes decisions and is responsible for cognitive control. Positive va-
lence increases the neurotransmitter dopamine, enhancing cognitive control [28–30]. This 
may explain prefrontal activation in pleasant conditions (see Figure 15). 

In summary, in the unpleasant-aroused condition, the frontal lobe showed a stronger 
activation than the occipital lobe. Overall, in pleasant conditions, the prefrontal lobe 

Figure 20. The absolute value in the short-distance connectivity.

By comparing the three extracted brainwave connectivity eigenvalues with subjective
evaluations, we found that the long-distance prefrontal connectivity eigenvalues have simi-
lar characteristics to the valence score measures of subjective evaluations. The prefrontal
cortex (PFC) makes decisions and is responsible for cognitive control. Positive valence



Sensors 2022, 22, 6736 13 of 17

increases the neurotransmitter dopamine, enhancing cognitive control [28–30]. This may
explain prefrontal activation in pleasant conditions (see Figure 15).

In summary, in the unpleasant-aroused condition, the frontal lobe showed a stronger
activation than the occipital lobe. Overall, in pleasant conditions, the prefrontal lobe
showed a stronger activation than other regions. Conversely, in unpleasant conditions, the
prefrontal lobe showed a weaker activation than other regions.

4.3. Clustering Eye Movement Features

The statistical results showed that the short-distance connectivity eigenvalue and sub-
jective evaluation arousal score had similar characteristics. Connectivity in the unpleasant-
relaxed condition was the strongest (Figure 16). Specifically, central-parietal connectivity
showed stronger connectivity than frontal–temporal and frontal–central connectivity. Un-
pleasant emotions are known to activate central–parietal connectivity [31].

The three eigenvalues of the extracted EEG can be used to distinguish the four emo-
tions in the two-dimensional emotional model. We conducted an unsupervised K-means
analysis in chronological order using these three eigenvalues. We distinguished the emo-
tional and non-emotional states of each participant while viewing the emotional video. The
emotional and non-emotional states of the eye movement data were then distinguished.
Figure 21 shows an instance of a participant’s K-means results. Group 1 indicates the
non-emotional states, whereas Group 2 indicates the emotional states. The figure implies
that the participant’s state changes from a non-emotional state (i.e., 0.0) to an emotional
state (i.e., 1.0) as a function of time.
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Figure 21. An instance of a participant’s k-Means results.

Figures 22 and 23 depict the post-hoc analysis of the left and right pupils between
the two-dimensional emotional model conditions. From the statistical results of the eye
movement eigenvalues, the characteristics of the right pupil and left pupil did not change
much between the four conditions; the pupil of the pleasant-aroused condition had the
largest change, followed by the pleasant-relaxed and unpleasant-relaxed conditions. The
least difference was observed in the unpleasant-aroused condition.

However, in relaxed conditions (pleasant-relaxed and unpleasant-relaxed), the right
pupil of the unpleasant-relaxed condition was larger than the left pupil. From the first eigen-
value long-distance O-F connectivity of brain wave connectivity, we found two locations
with high connectivity: the right occipital lobe and the left and right prefrontal lobes.

Figure 24 shows the results of the post hoc analysis of the fixation between the two-
dimensional emotional model conditions. The fixation feature in the unpleasant-relaxed
condition was larger than that in the other three conditions.
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volved with working memory [35], decision making [36], and executive attention [37]. 
However, most recently, Nejati et al. [32] found that the role of dlPFC extends to the reg-
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distance occipital-frontal connectivity. After making a judgment, the frontal lobe provides 
instructions to the occipital lobe, which moves the eye. Electrical stimulation of several 

Figure 24. The post hoc analysis on the fixation. ** p < 0.05. *** p < 0.001.

Figure 25 shows the results of the post hoc analysis of the saccade between the two-
dimensional emotional model conditions. The results showed the lowest change in the
unpleasant-relaxed condition, and the greatest change in the pleasant-relaxed condition.
The characteristics of the saccades were similar to those of the short-distance connectiv-
ity eigenvalues. Short-distance connectivity also showed weak brain connections in the
unpleasant-relaxed condition (see Figure 14). After the frontal lobe makes a cognitive
judgment, it gives instructions to the occipital lobe, causing saccadic eye movements.



Sensors 2022, 22, 6736 15 of 17

Sensors 2022, 22, x  17 of 20 
 

 

 
Figure 24. The post hoc analysis on the fixation. ** p < 0.05. *** p < 0.001.  

 
Figure 25. The post hoc analysis on the saccade. *** p < 0.001. 

5. Conclusions and Discussion 
This study aimed to understand the relationship between brain wave connectivity 

and eye movement characteristic values using a two-dimensional emotional model. We 
divided brainwave connectivity into three distinct groups: long-distance occipital–frontal 
connectivity, long-distance prefrontal connectivity between the prefrontal lobe and tem-
poral lobe, parietal lobe, and central lobe, and short-distance connectivity including the 
characteristic relationships between the frontal lobe–temporal lobe, frontal lobe-central 
lobe, temporal–parietal lobe, and parietal lobe–central. Then, through unsupervised learn-
ing of these three eigenvalues, the emotional response was divided into emotional and 
non-emotional states in real time using K-means analysis. The two states were used to 
extract the feature values of the eye movements. We analyzed the relationship between 
eye movements and brain wave connectivity using statistical analyses. 

The results revealed that the connectivity eigenvalues of the long-distance prefrontal 
lobe, temporal lobe, parietal lobe, and center are related to cognitive activity involving 
high valence. The prefrontal lobe occupies two-thirds of the human frontal cortex [32] and 
is responsible for recognition and decision-making, reflecting cognitive judgment from 
valence responses [33,34]. Specifically, the dorsolateral prefrontal cortex (dlPFC) is in-
volved with working memory [35], decision making [36], and executive attention [37]. 
However, most recently, Nejati et al. [32] found that the role of dlPFC extends to the reg-
ulation of the valence of emotional experiences. Second, the saccade correlated with long-
distance occipital-frontal connectivity. After making a judgment, the frontal lobe provides 
instructions to the occipital lobe, which moves the eye. Electrical stimulation of several 

Figure 25. The post hoc analysis on the saccade. *** p < 0.001.

5. Conclusions and Discussion

This study aimed to understand the relationship between brain wave connectivity and
eye movement characteristic values using a two-dimensional emotional model. We divided
brainwave connectivity into three distinct groups: long-distance occipital–frontal connec-
tivity, long-distance prefrontal connectivity between the prefrontal lobe and temporal lobe,
parietal lobe, and central lobe, and short-distance connectivity including the characteristic
relationships between the frontal lobe–temporal lobe, frontal lobe-central lobe, temporal–
parietal lobe, and parietal lobe–central. Then, through unsupervised learning of these three
eigenvalues, the emotional response was divided into emotional and non-emotional states
in real time using K-means analysis. The two states were used to extract the feature values
of the eye movements. We analyzed the relationship between eye movements and brain
wave connectivity using statistical analyses.

The results revealed that the connectivity eigenvalues of the long-distance prefrontal
lobe, temporal lobe, parietal lobe, and center are related to cognitive activity involving
high valence. The prefrontal lobe occupies two-thirds of the human frontal cortex [32]
and is responsible for recognition and decision-making, reflecting cognitive judgment
from valence responses [33,34]. Specifically, the dorsolateral prefrontal cortex (dlPFC) is
involved with working memory [35], decision making [36], and executive attention [37].
However, most recently, Nejati et al. [32] found that the role of dlPFC extends to the
regulation of the valence of emotional experiences. Second, the saccade correlated with
long-distance occipital-frontal connectivity. After making a judgment, the frontal lobe
provides instructions to the occipital lobe, which moves the eye. Electrical stimulation of
several areas of the cortex evokes saccadic eye movements. The prefrontal top-down control
of visual appraisal and emotion-generation processes constitutes a mechanism of cognitive
reappraisal in emotion regulation [38]. The short-distance connectivity results showed
emotional fluctuations caused by the unconscious stimulation of audio-visual perception.

We acknowledge some limitations of the research. First, the results of our study are
from one stimulus for each of the four quadrants in the two-dimensional model. Future
studies may use multiple stimuli, possibly controlling the type of stimuli. Second, although
pupillometry is an effective measurement for understanding brain activity changes related
to arousal, attention, and salience [39], we did not find consistent and conclusive results
between pupil size and brain connectivity. The size of pupils changes according to ambient
light (i.e., pupillary light reflex) [40,41], which may have confounded the results. Future
studies should control extraneous variables more thoroughly to find the main effect of pupil
characteristics. Third, our analysis is based on participants of local university students,
limiting the age range (i.e., 20 to 30 years). Age and culture may influence the results, so
future studies may consider a broader range of demographic populations and conduct
a cross-cultural investigation.
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The study purposely analyzed brain connectivity and changes in eye movement in
tandem to establish a relational basis between neural activity and eye movement features.
We took the first step in unraveling such a relationship, albeit fell short in achieving
a full understanding, such as the pupil size characteristics. Because the eyes’ structures
are connected to the brain’s nerves, an exclusive analysis of eye features may lead to
a comprehensive understanding of the participant’s emotions. A non-contact appraisal of
emotion based on eye feature analysis may be a promising method applicable to metaverse
or media art.
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