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Emotional intelligence is essential to maintaining human relationships in communi-
ties, organizations, and societies. By definition, emotional intelligence refers to how well
emotion is recognized and expressed. The level of emotional intelligence of an AI is mainly
determined by its ability to accurately and reliably recognize its human counterpart; that is,
all next-generation AI devices and services involving VR, AR, and social robots are able to
quantitatively track and recognize emotion in real-time during an interaction with a human.

Emotion has been quantified by sensing facial expressions, gestures, and physiological
signals such as EEG, ECG, and EDA. In addition, emotion could be more accurately
recognized by considering the emotional context, including spatiotemporal variability, the
congruency of implicit and explicit responses, the consistency of human action, and human
relationships in society. Human emotion includes not only short-term but also long-term
responses to patterns and trends in daily life. Lab studies with the aim of sensing emotion
should extend to smart sensing, which monitors and tracks emotional variation with a
predictable pattern.

This Special Issue explores empirical studies of emotional mechanisms, qualitative
and quantitative measurements of emotion, the recognition of emotional contexts, and the
application of emotion. Fourteen papers were accepted for publication in this Special Issue
entitled “Emotion Intelligence Based on Smart Sensing”, which includes papers ranging
from lab-based studies aimed at understanding emotional mechanisms to applying emotion
recognition in the real world (e.g., in driving, games, education, and virtual avatars). They
are summarized below.

The review paper in [1] presents a detailed analysis of over 600 papers related to sen-
sors and methods to understand affective-, emotional-, and physiological-state recognition.
Facial action coding and facial expression analysis are long-studied fields, as represented
by four articles in our SI. While facial recognition systems in the real world (i.e., in an
uncontrolled environment) have evolved with performance improvements, [2] proposed a
multi-spectral facial recognition system that overcomes the limitation of a single spectral
band in the visible spectrum. The multi-spectral facial recognition system is robust to
occlusions (e.g., fog or plastic materials) and low- or no-light environments. The authors
of [2] achieved 99.5% (pose variation) and 99.6% (expression variation) Rank-1 scores in
the TUFTS multi-spectral database. As AI technology evolves rapidly, so does the facial
expression recognition algorithm. The authors of [3] proposed a multi-depth network that
classifies facial expressions by being fed reinforced features. A multi-rate-based 3D convo-
lutional neural network (CNN) built on a multi-rate signal process scheme was suggested,
and they achieved 96.23% accuracy with the CK+ dataset.

Building an emotionally intelligent system requires a better understanding of human
facial expression characteristics. The authors of [4] investigated the differences in the
intensity of facial expressions between older (n = 56) and younger adults (n = 113). The
participants’ facial expressions were elicited using facial expression stimuli. The results
indicated that the older adults strongly expressed some negative and neutral emotions.
In addition, older adults used more facial muscles than younger adults across emotions.
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Human facial expressions include facial micromovements, which provide insights into
fake expressions. The authors of [5] investigated the characteristics of real and fake facial
expressions representing emotions by analyzing participants’ facial micromovements. The
results indicated significant differences in the micromovement feature variables between
the real and fake expression conditions. The differences varied according to facial regions
as a function of emotions.

This issue also includes a speech-emotion-recognition study [6] that proposed a multi-
path and group-loss-based network (MPGLN) for emotion recognition to support multi-
domain adaptation. The authors proposed a model that includes a bidirectional long
short-term memory-based temporal feature generator and a transferred feature extractor
from the pre-trained VGG-like audio classification model (VGGish). The model learns
simultaneously based on multiple losses according to the association of emotion labels in
the discrete and dimensional models.

The simultaneous activation of brain regions (i.e., brain connection features) is an
essential mechanism of brain activity in emotion recognition, and this issue presents
three EEG-based studies that advance such science. The authors of [7] investigated the
relationship between brain connectivity (strength and directionality) and eye movement
features (left and right pupils, saccades, and fixations) when participants (n = 47) viewed
emotion-eliciting content. They found that the connectivity eigenvalues of the long-distance
prefrontal lobe, temporal lobe, parietal lobe, and center were related to cognitive activity
involving high valance. In addition, saccade movement was correlated with long-distance
occipital–frontal connectivity. The authors of [8] investigated model-free functional connec-
tivity metrics along with deep learning to efficiently classify human cognitive workload.
They achieved state-of-the-art multi-class classification accuracy of 80.87% using a combi-
nation of MI (Mutual Information) and CNN, followed by 75.88% using a combination of
PLV (Phase Locking Value) and CNN (at), and 71.87% using MI with LSTM. The authors
of [9] constructed a learning emotion EEG dataset (LE-EEG) which captures physiological
signals reflecting the emotions of boredom, neutrality, and engagement during learning,
and proposed an EEG emotion classification network based on attention fusion (ECN-AF).
On the LE-EEG dataset, the proposed model achieved the highest accuracy of 95.87%,
demonstrating a 21.49% increase compared to the baseline models.

Biological hormones are relatively less explored, but could provide insights into
negative emotions such as fear or panic. The authors of [10] investigated catecholamines,
which are hormones released in the body in response to physical or emotional stress. They
analyzed physiological signals in reference to catecholamine through an experimental
task whereby 21 female volunteers received audiovisual stimuli through an immersive
virtual-reality environment.

The essence of emotional intelligence overlaps with empathy, a psychological construct.
A system that analyzes whether a human is empathizing is paramount. The authors of [11]
suggested a non-contact method for measuring empathy by evaluating the synchronization
of facial micro-movements between consumers and people in the media. Their study
shows that the non-contact ballistocardiography (BCG) method can be complementary to
subjective empathy scales.

Finally, this issue also extends to studies applicable to the real world (e.g., in driving,
games, and virtual agents). The authors of [12] proposed a data collection system that
collects multimodal emotion datasets during real-world driving. The proposed system
includes a self-reportable HMI application into which a driver directly inputs their current
emotion state. To demonstrate the collected dataset’s validity, the paper provides case
studies for statistical analysis, driver face detection, and personalized driver emotion
recognition. The authors of [13] used electrocardiograms (ECGs) to investigate heart
rate variability (HRV) parameters that can quantitatively characterize game addiction.
The participants played the game League of Legends, and the experimenter performed ECG
measurements during the game at various window sizes and specific events. The correlation
and factor analyses were used to find the most effective parameters. The most accurate
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set of parameters was found to be pNNI20, RMSSD, and LF within 30 s after the “being
killed” event. The authors of [14] investigated elements that may affect a the participant’s
social perceptions (similarity, familiarity, attraction, liking, and involvement) of customized
virtual avatars engineered considering the user’s facial characteristics. The results indicated
that participants felt that the avatar that embodied their habitual expressions was more
similar to them than the avatar that did not.
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