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Abstract: People tend to display fake expressions to conceal their true feelings. False expressions
are observable by facial micromovements that occur for less than a second. Systems designed
to recognize facial expressions (e.g., social robots, recognition systems for the blind, monitoring
systems for drivers) may better understand the user’s intent by identifying the authenticity of the
expression. The present study investigated the characteristics of real and fake facial expressions of
representative emotions (happiness, contentment, anger, and sadness) in a two-dimensional emotion
model. Participants viewed a series of visual stimuli designed to induce real or fake emotions and
were signaled to produce a facial expression at a set time. From the participant’s expression data,
feature variables (i.e., the degree and variance of movement, and vibration level) involving the facial
micromovements at the onset of the expression were analyzed. The results indicated significant
differences in the feature variables between the real and fake expression conditions. The differences
varied according to facial regions as a function of emotions. This study provides appraisal criteria for
identifying the authenticity of facial expressions that are applicable to future research and the design
of emotion recognition systems.

Keywords: facial micromovement; emotion recognition; emotion authenticity

1. Introduction

Humans utilize both verbal and nonverbal communication channels. The latter
category includes facial expressions, gestures, posture, gait, gaze, distance, and tone
and manner of voice [1]. Facial expressions, which account for up to 30% of nonver-
bal expressions, are the most rapidly processed type of expression by visual recogni-
tion [2]. Facial expressions project the communicator’s intentions and emotions [3].
However, people may conceal their true feelings and produce fake expressions [4]. Such false
expressions are exhibited for a very short time with only subtle changes [5], and it is ex-
tremely difficult to detect their authenticity with eyesight [6]. Identifying fake expressions
is paramount to counter deception and recognize users’ true intent in advanced intelligent
systems (e.g., social robots and assistive systems).

Early research involving facial expressions focused on establishing a quantitative
classification framework to recognize emotions. Ekman built a facial action coding system
(FACS), a computation system that encodes facial features’ movements to taxonomize
emotions from facial expressions. Analysis of facial expressions also spurred interest in the
authenticity of expressions.

Researchers have found asymmetric intensity in facial expressions. Dopson revealed
that the intensity of expressions in the left face was stronger than that in the right face in the
case of voluntary expressions [7]. Conversely, the intensity was weaker than that in the right
face in the case of involuntary expressions. These results suggest that the comparison of
both sides may identify the authenticity of expressions. The sensitivity of left-face expressions
is because facial movements are connected to the right hemisphere of the brain. Patients with
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right-brain injuries are reported to experience significant degradation in recognizing emotions
from facial expressions compared with patients with left-brain injuries [8].

Studies have also found differential activation of facial muscles between real and fake
expressions. Duchenne experimented on facial muscular contractions with electrical probes
to understand how the human face produces expressions [9]. He observed that participants
produced a genuine smile with a unique contraction of the Orbicularis oculi muscle [10].
This “smiling with the eyes” is called the Duchenne smile, in his honor.

Ekman analyzed human false expressions and identified minute vibrations or sponta-
neous changes in the facial muscles responsible for emotional expression [11]. Such mi-
cromovements are observed in false (e.g., deception) or pretended (e.g., to be polite)
expressions [5]. Facial micromovement is also called microexpression. Micromovement oc-
curs with less than a second of movement and with vibration lasting between 0.04 and
0.5 s [12–14]. Simultaneously, in a typical interaction, an emotional expression begins
and ends with a macroexpression that occurs in less than 4 s [15]. The degree of move-
ment or the vibration of the facial muscles between real and fake expressions can be
significantly different [11].

Recent advances in AI technology have led to research on identifying the authenticity
of facial expressions using repetitive training with paired data of facial expressions and
visual content (an image and a video clip) [16,17]. Microexpression recognition (MER)
researchers have put massive effort into open innovation (e.g., facial microexpressions
grand challenge [18,19]) to improve the state-of-the-art algorithm. Academic challenges
include all aspects of MER sequences such as data collection, preprocessing (face detection
and landmark detection), feature extraction, microexpression recognition, and emotion
classification within the computer vision domain (for a comprehensive review, see [20]
and [21]). Similar to other AI domains, convolutional neural networks (CNNs) have been
used the most for MER [22]. A generative adversarial network (GAN), with a generator
and an adversarial discriminator model, has been used for feature extraction [23] and facial
image synthesis [24]. Most recently, extended local binary patterns on three orthogonal
plans (ELBPTOP) were introduced to counter information loss and computational burden
of the previous dominant descriptors, LBPTOP [25].

While researchers continue to pursue better algorithms to improve MER accuracy and
reliability, in the most recent survey of facial microexpression analysis [20], Xie observed
that MER literature on facial asymmetrical phenomena is scarce and limited. While re-
searchers have found an asymmetric intensity in facial expressions, less is known regarding
where in the facial region such microexpressions are the most salient and how they interact
with different emotions. Specifically, feature variables (i.e., the degree and variance of
movement, and vibration level) of emotions that are primarily expressed with the relax-
ation of facial muscles (e.g., contentment, sadness) may have weaker intensity in the real
condition. Systematic research identifying reliable indicators of authenticity per facial
region as a function of emotion is imperative.

Physiological data, including electrocardiogram (ECG), are powerful signals for emo-
tion identification [26]. ECG correlates with the contraction of the heart muscles and
varies as a function of emotion [27]. In order to achieve a deeper understanding of MER,
facial vision data should be fused with cardio signals [20]. To the best of our knowledge,
no research has combined the two.

In summary, the study hypothesized that (1) there is a significant difference in the
micromovements at the onset of expression between real and fake conditions, and (2) such
differences vary by representative emotions (happiness, sadness, contentment, anger).
The findings were cross-validated with neurological measurements (ECG).

2. Methods
2.1. Experiment Design

The present study used a 2 × 4 within-subject design. The authenticity factor had two
levels (real and fake), and the emotion factor had four levels (happiness, sadness, anger,
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and contentment). The visual stimulus consisted of a still photo and a video clip. The still
photo depicted a facial expression of the target emotion. The video clip, which was shown
after the still photo, was a recording that was designed to induce either the target emotion
shown in the still photo or a neutral emotion.

The participants were then asked to produce a facial expression that the participant
felt while watching the still photo. The real condition was manipulated by showing the
two materials, the still photo and the video clip, congruently. The false condition was
manipulated by having the video clip induce a neutral emotion. In this case, participants
were forced to produce a facial expression based on the photo that they viewed earlier. If a
different emotion was induced other than neutral, the participant’s emotion may have been
compounded, which made the measurements difficult to explain. After every 30 s during
the video, participants were signaled with a visual cue to produce a facial expression.

The dependent measurements involved micromovements in the face. That is, the av-
erage movement, standard deviation, and variance of the facial muscle movements were
measured. Facial vibration was analyzed with the dominant frequency elicited by the fast
Fourier transform (FFT).

2.2. Participants

Fifty university students were recruited as participants. The participants’ average
age was 22.5 years (SD = 2.13) with an even ratio in gender. We selected participants with
corrective vision of 0.7 or above to ensure the participants’ reliable recognition of visual
stimuli. The participants were not allowed to wear glasses. All participants were briefed
on the purpose and procedure of the experiment and signed a consent form. Participants
were compensated with participation fees.

2.3. Procedure and Materials

Figure 1 illustrates the experimental procedure. Each participant’s neutral facial
expression was captured for 210 s before the main task. This was considered as the
individual’s reference expression. Participants were then exposed to eight combinations
of visual stimuli—four sets (happiness, sadness, anger, and contentment) to elicit real
emotions and four sets to elicit fake emotions. The order was randomized to counter order
and learning effects. A set of stimuli consisted of a still photo and a video clip. A set used to
induce real emotion had congruent emotions between the two materials. Conversely, a set
to induce false emotions had inconsistent emotions between the two materials. In this case,
the video clip induced a neutral emotion.

Figure 1. Experimental procedure.

After viewing the visual stimuli, the participants were given a resting period of 60 s.
During this period, participants reported their current emotional state with a subjective
evaluation. Participants reported their (1) emotional state (happiness, sadness, anger,
disgust, fear, surprise, and contentment), (2) degree of arousal, and (3) degree of pleasant-
ness. The latter two were rated on a five-point Likert scale. (1) We provided a comprehen-
sive set of seven emotions to select from to exclude any data from participants who felt
nothing or had a different emotion from the target emotion. The exclusion was determined
for each condition, even for neutral video clips, to eliminate any compounding factors from
the data.



Sensors 2021, 21, 4616 4 of 17

The participant’s facial data were acquired using a webcam. A Logitech c920 webcam
(Logitech, Lausanne, Switzerland) was used to obtain image data with a resolution of
1280 × 980 at 30 frames per second. To analyze the activation level of the autonomic
nervous system (ANS) when participants were exposed to visual stimuli, participants’
heart rate variability (HRV) and electrocardiogram (ECG) data were acquired. The latter
was obtained through a Biopac (Biopac, Goleta, CA, USA) system with a frequency of
500 Hz.

Figure 2 shows the experimental setup. Participants were asked to sit and view the
experiment monitor at a distance of 60 cm. A webcam, which acquired facial data from the
participant, was placed on top atop the monitor.

Figure 2. Experimental setting.

2.4. Statistical Analysis

The present study compared the differences in the micromovement of facial expres-
sions between real and fake emotions. From the participant’s expression data, feature vari-
ables (i.e., the degree and variance of movement, as well as vibration level) obtained at
4 s (macromovement), 1 s, and 0.5 s (micromovements) after the onset (t) of facial ex-
pression were analyzed. For each representative emotion (happiness, contentment, anger,
and sadness), a t-test was used to compare the differences between the feature variables
in the two conditions (real and fake) for all 11 AUs responsible for emotional expression.
The following section explains how the feature variables were extracted and how the ECG
data were obtained.

3. Analysis

Figure 3 outlines the analysis process. To analyze the data, we established an op-
erational definition of facial expression muscles and extracted facial movement data for
such muscles. In total, 40 datasets were analyzed; participants who had excessive facial
movements or participants who did not display emotion were excluded. That is, the exper-
imenter screened each recorded video clip and excluded participants who had turned their
faces, clearly looking at an object outside of the screen, or when the system had failed to
track their faces. To minimize the exclusion, we had instructed the participants to reduce
the facial movement and look straight ahead.

The expression onset segment was defined ( 2© in Figure 3) based on the threshold of
facial movement. Feature variables were then extracted by comparing the rate of change in
action units (AUs) between data frames. The effective feature variables were selected by
comparing the feature variables of real and fake expressions for each emotion.
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Figure 3. Data analysis process.

3.1. Operational Definition of Facial Muscles

The present study recognized the participants’ emotions by identifying the activation
of anatomical regions that represent a particular emotion. The AUs were extracted using
facial landmarks through a Python program. Figure 4 depicts the extraction process.

Figure 4. Facial muscle extraction process.

Each frame obtained from the webcam was analyzed. First, the location of the face
in the image was identified using a face detection model, the Haar cascade classifier [28].
Face detection models extracted the target object’s features from the dataset and compared
the features from the pretrained data to identify the object. Specifically, the present system
used the Haar-like feature to detect the region of a face (region of interest (ROI)) by
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identifying the location of the nose and eyes. The system then identified 68 facial landmarks
by tracking the eye, eyebrows, nose, lips, and chin line using the Dlib library [29], which was
trained with a massive quantity of data. The differential facial muscles per facial expression
were predefined and utilized to extract 11 muscle areas (i.e., coordination). Eleven facial
muscle units (AUs) involving the brow, eyes, cheeks, chin, and lips responsible for facial
expressions were predefined and extracted from the participant’s dataset (see Table 1).
Figure 5 visualizes the relative locations of action units.

Table 1. Action Unit Definitions.

Action Units Description Muscular Basis Landmark

AU4_M Brow depressor
Depressor glabella

21, 22, 27Depressor supercilii
Corrugator supercilii

AU5_L Upper Lip raiser Lavator palpebrae
superioris

23, 25, 44
AU5_R 18, 20, 37

AU6_L Cheek raiser
Orbicularis oculi

15, 26, 45
AU6_R Lip tightener 1, 17, 36

AU12_L Lip corner puller Zygomaticus major 14, 35, 54
AU12_R 2, 31, 48

AU15_L Lip corner depressor Depressor anguli oris 10, 11, 54
AU15_R 5, 6, 48

AU23_L Lip tightener Orbicularis oris
52, 53, 63

AU23_R 49, 50, 61

Figure 5. The relative locations of action units.

These 11 AUs are the centroid values of the three corresponding facial landmarks,
computed as follows:

A(x1, y1), B(x2, y2), C(x3, y3)

P( x1+x2+x3
3 , y1+y2+y3

3 )
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For further analysis, facial data from the last 30 s were extracted and analyzed.
That is, we defined the first 180 s as time for the visual content to sufficiently “sink in” for
the participants.

3.2. Feature Variable Extraction

To extract feature variables involving facial micromovement, we developed a mi-
cromovement extraction program built by LabVIEW 2016 for massive data processing.
From the last 30 s of the participant’s dataset, 11 AUs (Table 1) were calculated. A threshold
was used, the average movement of an AU, using the following min-max algorithm to
determine the onset of facial expressions. The micromovement section before the onset
was extracted.

Threshold =
(Max + Min)

2
The expression section after the onset consisted of one macromovement section (4 s)

and two micromovement sections (1 s, 0.5 s). These three sections may overlap. The move-
ment data from the three sections were extracted. That is, the degree of change (delta) in
the coordination of an AU between the current and previous frames was computed as
follows, which was performed to analyze the degree of facial vibration.

xn = prevAU[n]·x − currAU[n]·x
yn = prevAU[n]·y − currAU[n]·y

Finally, we extracted feature values by analyzing the delta value. That is, the average
and standard deviation of the delta and FFT values were extracted. The former two were
used to analyze the degree and variance of the change. The latter was used to analyze the
degree of facial vibration through the dominant frequency obtained by the FFT.

3.3. Heart Rate Variability Analysis

In addition to the facial data, ECG data were measured while the visual stimuli were
shown for 210 s. The participants’ time-series data were transformed into a frequency band
using FFT. This enabled measurement of the ANS responses of participants exposed to
emotion-inducing stimuli [30,31]. Table 2 outlines the HRV variables used in this study.
To measure the change in the serial heart rate data, a 180-s sliding window was used.

Table 2. Heart Rate Variability Variables.

Variable Unit Definition Frequency Range

VLF ms2 The power value in
the VLF frequency 0.003~0.04 Hz

LF ms2 The power value in
the LF frequency 0.04~0.15 Hz

HF ms2 The power value in
the HF frequency 0.15~0.4 Hz

VLF (%) % VLF divided by the
overall power value

LF (%) % LF divided by the
overall power value

HF (%) % HLF divided by the
overall power value

4. Results

The current study analyzed changes in facial micromovements between real and
fake expressions of representative emotions. A t-test was used to compare the differences
between the participants’ facial expressions in the two conditions. The feature variables
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obtained at 4 s (macromovement), 1 s, and 0.5 s (micromovements) after the onset (t) of
facial expression were analyzed.

Figure 6 shows the template used to visualize the results. The blank squares on the
right indicate the 11 AUs (Table 1) representing the facial muscles responsible for facial
expressions. The statistical difference between the real and fake conditions are color coded
in Figures 7, 9, 11 and 13 in three levels: p < 0.001: *** ; p < 0.01: ** ; p < 0.05: * .

Figure 6. (a) Eleven AU regions (red dots) for feature variable extraction; (b) visualization framework
for reporting the results.

In the HRV analysis, we compared the difference in ANS activation between the real
and fake conditions.

4.1. Authenticity of Happiness

The results of the analysis of micromovement involving expressions of happiness are
as follows. Figure 7 depicts the differential movement of the facial regions between the
two conditions through the visualization of a face. All 11 AUs had at least one significant
difference in the dependent variables (dominant peak frequency, average, and standard
deviation of movement).

Figure 7. Statistical differences between real and fake happiness expressions (AVG = Average,
SD = Standard Deviation).

The average at t + 0.5 (0.5 s after the onset) showed a significant difference in all AUs,
whereas only partially significant differences appeared at t + 1, mostly in the left face.
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This implies that expressions of happiness may be most prominent in the early stage (0.5
s) of a microexpression but persist until t + 1 in the left face. Further regression analysis
on average movement showed that the time segment factor enters the regression equation
(R2 = 0.97), p < 0.001, along with the authenticity factor, p < 0.05.

However, for the standard deviation, the values at t + 1 significantly differed in all
11 AUs. The domain peak frequency also showed a significant difference at t + 1 in all
AUs. The domain peak frequency at t + 0.5 showed a significant difference in the lips,
left eyebrows, and brow.

Figure 8 presents a statistical comparison between dependent variables for each AU,
collapsing data from the three sections (t + 0.5, t + 1, and t + 4). The measured values were
higher in real expressions in almost all regions.

Figure 8. Comparison between feature variables of happiness expressions.

4.2. Authenticity of Contentment

The results of the analysis of micromovements involving expressions of contentment
are as follows. Figure 9 depicts the differences in the movement of facial regions between
the two conditions.
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Figure 9. Statistical differences between real and fake contentment expressions (AVG = Average,
SD = Standard Deviation).

At t + 1, except for the left eyelid, all 10 AUs were found to have a significant average
difference. Similar results were observed for the standard deviation. At t + 0.5, nine AUs
were reported to have a significant average difference. This indicates that the microex-
pression of contentment, compared to happiness, may persist longer. Further regression
analysis on average movement showed that the time segment factor enters the regression
equation (R2 = 0.97), p < 0.001, along with the authenticity factor, p < 0.001 and the face
side factor, p < 0.001.

The vibration of the macromovement (dominant peak frequency at t + 4) was signifi-
cantly different in many facial regions, including the mouth tail and eyelid of the right side
and the eye tail, eyelid, and mouth tail of the left side. Similar results were observed for
the standard deviation in the same regions.

As shown in Figure 10, similar to the happiness condition, the average was signif-
icantly higher in the real condition, but the dominant peak frequency was significantly
higher in the fake condition. That is, there was more facial movement in the real condition
but more facial vibration in the fake condition.
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Figure 10. Comparison between feature variables of contentment expressions.

4.3. Authenticity of Anger

The results of the analysis of micromovement involving expressions of anger are as
follows. Figure 11 depicts the differences in the movement of facial regions between the
two conditions.

Similar to the results in the happiness condition, micromovements at t + 0.5 had a
statistical difference in all regions, 11 of them at p < 0.001. Unlike with happiness, however,
the differential micromovements of anger persisted through t + 1, except for in two of
the facial regions. Further regression analysis on average movement showed that the
time segment factor entered the regression equation (R2 = 0.96), p < 0.001, along with the
authenticity factor, p < 0.001 and the face side factor, p < 0.05.
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Figure 11. Statistical differences between real and fake anger expressions (AVG = Average, SD = Stan-
dard Deviation).

A significant difference in dominant peak frequency was found in all regions except
for the right eye tail and the left eyelid in all time segments.

As shown in Figure 12, similar to the happiness condition but unlike the content-
ment condition, all three measurements were higher in the real condition than in the
fake condition.

Figure 12. Comparison between feature variables of anger expression.
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4.4. Authenticity of Sadness

The results of the analysis of micromovement involving the expression of sadness are
as follows. Figure 13 depicts the differential movement of the facial regions between the
two conditions.

Figure 13. Statistical differences between real and fake sadness expression (AVG = Average,
SD = Standard Deviation).

The significant differences were not dominant in all facial regions compared to other
emotion conditions, but instead concentrated on the left side of the face. Specifically, sim-
ilar results were found in the micromovements (t + 1 and t + 0.5) in the left eyelid and
mouth tail. Further regression analysis on average movement showed that the face side
(left or right) factor enters the regression equation (R2 = 0.96), p < 0.001, along with the
authenticity factor, p < 0.001 and the time segment factor, p < 0.001.

A significant difference was found in the mouth region in all segments with respect to
the dominant peak frequency. However, the difference in vibration was prominent and
salient at t + 4 and t + 0.5.

As shown in Figure 14, when the data are collapsed, similar to the contentment
condition, the standard deviation and the dominant peak frequency were higher in the
fake condition than in the real condition.
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Figure 14. Comparison between feature variables of sadness expressions.

4.5. Analysis of Heart Rate Variability

The HRV data of the fake condition were compared to those of the real condition of
the three frequency bands (very low, low, and high) (see Figure 15). This was performed
to compare the ANS response, independent of emotions. Except for the LF (%) variable,
a significant difference was found in all variables (p < 0.001). Specifically, VLF and VLF (%)
were higher in the real condition than in the fake condition. Conversely, HF and HF (%)
were higher in the fake condition than in the real condition. LF was significantly higher in
the fake condition.

Figure 15. Comparison of frequency domain.
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5. Conclusions and Discussion

The present study compared the differences in the micromovement of facial expressions
between real and fake emotions. The study utilized 11 AUs based on anatomical muscle
location responsible for emotional expression. That is, we identified the difference in the
feature variables (average and standard deviation of movement, as well as dominant peak
frequency) between the real and fake conditions by facial regions for each representative emo-
tion (happiness, contentment, anger, and sadness). In conclusion, the study showed that the
degree of activation is higher if the expression is authentic, implying more micromovement.

The study analyzed the feature variables in three time segments (0.5, 1, and 4 s) after
the onset (t) of facial expression for each representative emotion. Results indicated that
micromovements are more informative at an early stage (less than a second) of expression.
In the case of t + 1 and t + 0.5, a significant difference between the real and fake conditions
was observed in the left face than the right in the happiness condition. The asymmetric
difference in the activation of the face can be explained by activation of the right brain
region [32]. Campbell found that the left face expresses more than the right in voluntary
expressions. Conversely, the left face expresses less than the right in involuntary expres-
sions [33]. In the anger condition, compared with other emotions, the brow had the highest
number of feature variables that were significantly different between the real and fake
conditions. This was a result of muscle movement from the participant’s frowning.

At t + 4, compared to the time segments in which less than a second had elapsed,
less statistical differences were observed between the two conditions for all four emo-
tions. This confirms that measurements at t + 4 cannot reliably capture the differential
micromovements between real and fake expressions. The data at t + 4 also include the
macromovements of facial muscles and hence may not be sensitive enough to identify
abrupt changes in facial movements (i.e., micromovements).

Collapsing the data across time segments, all three feature variables (average, stan-
dard deviation, and dominant peak frequency) of the real condition were significantly higher
than those of the fake condition in the happiness and anger conditions. Conversely, in the
contentment and sadness conditions, the standard deviation and dominant peak frequency of
the fake condition were significantly higher. That is, emotions that are primarily expressed
with the relaxation of facial muscles, such as contentment and sadness, were observed with
weaker intensity in the real condition. The results support the hypothesis that the degree of
expression differs between the real and fake conditions as a function of emotions.

Our findings were cross-validated with neurological measurements involving the
PSNS and ANS. In the HRV analysis, both HF and HF (%) indicators for the parasympa-
thetic nervous system (PSNS) were higher in the fake condition than in the real condition.
Conversely, both VLF and VLF (%) indicators for the ANS were higher in the real condition
than in the fake condition. LF (%), an indicator that involves both the PSNS and ANS,
did not show a significant difference. In conclusion, the stimuli in the real condition led to
the activation of the ANS, which implies an increase in the participant’s arousal. In addi-
tion, the stimuli in the fake condition led to the activation of the PSNS, which implies the
participant’s relaxation.

The study acknowledges the individual variance in participants’ emotions when they
were exposed to visual stimuli. To minimize this difference, a target facial expression
was provided. In the fake condition, to ensure that other emotions did not interfere,
visual content inducing a neutral emotion was used. That is, participants had to pretend
an expression while the stimuli conveyed neutrality. We acknowledge the limitations of
this experimental design, which may lower the ecological validity. However, future studies
may investigate when a real emotion is replaced by another emotion and study the change
in microexpressions.

Follow-up studies may introduce experimental treatments that are congruent with
real-world settings. Specifically, micromovements of expressions in complex emotions
merit further analysis. In addition, the study was limited to four representative emo-
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tions. Although not related to emotion authenticity, Adegun and Vadapalli analyzed
microexpressions to recognize seven universal emotions with machine learning [34].

Another limitation of the study involves facial landmark detection. Proper land-
mark detection is necessary to secure recognition accuracy [20]. We have identified 68
facial landmarks by tracking the eye, eyebrows, nose, lips, and chin line using the Dlib
library [29]. However, recent state-of-the-art methods, including tweaked convolutional
neural networks (TCNN), may improve the robustness of facial landmark detection [35].

The breakdown of feature variables may be used as an appraisal criterion to authen-
ticate facial data with emotional expressions. This study identified that data at less than
one second is critical for analysis of the authenticity of an expression, which may not be
reportable by the participants.

Systems capable of recognizing human emotions (e.g., social robots, recognition
systems for the blind, monitoring systems for drivers) may use the authenticity of the user’s
facial expression to provide a useful and practical response. Recognizing fake expressions
is imperative in security interfaces and systems that counter crime. For a social robot to
provide effective services, identifying the user’s intent is paramount. A recent human-robot
interaction study applied deep neural networks to recognize a user’s facial expressions in
real time [36]. Further recognition of the user’s false (e.g., deception) or pretended (e.g.,
to be polite) expressions might introduce more social, rich, and effective interactions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21134616/s1, Python Code_AU Extraction.
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